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Dynamic effective connectivity network based on change points detection 
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A B S T R A C T   

Human brain networks can be modeled as a system of interconnected brain regions which are recorded by time- 
dependent observations with functional magnetic resonance imaging (fMRI). In order to spot trends, detect 
anomalies, and interpret the temporal dynamics, it is essential to understand the connections among distinct 
brain regions, and how these connections evolve over time. However, the change points of dynamic reorgani
zation in brain connectivity are unknown, which may occur frequently during the scanning session. In this paper, 
we introduce a fused lasso regression approach to detect the number and position of rapid connectivity changes 
of subject and subsequently estimate the brain effective connectivity networks within each state phase lying 
between consecutive change points by conditional Granger causality method from fMRI time series data. The 
performance of the method is verified via numerical simulations and the obtained classification accuracy with 
support vector machine (SVM) was 86.24% in 140 subjects from Alzheimer’s Disease Neuroimaging Initiative 
(ADNI). Compared with static EC model and conventional dynamic EC model based on sliding window tech
nique, the experimental results show that the fused lasso achieved better classification effect, which probably due 
to better dynamic description. The result shows that the dynamic effective connectivity based on change points 
detected by fused lasso method is a better feature for classification.   

1. Introduction 

In recent years, functional magnetic resonance imaging (fMRI) has 
been widely used in clinical and scientific research as a fast, non- 
invasive and repeatable imaging technology, which measures the func
tional activity of brain neurons based on blood oxygen level dependent 
(BOLD) effect [1]. Functional brain network (FBN) consists of brain 
regions and connections that reflect dependency between intrinsic BOLD 
signals in distributed regions. Namely, nodes of the network are 
modeled as regions of interests (ROIs) and edges are quantified as 
functional connectivity (FC) or effective connectivity (EC) [2]. Func
tional connectivity measures the time-domain correlation between spa
tially distant neurophysiological signals, that is, the existence and 
strength of connectivity relationship between different brain regions. It 
is essentially a statistical notion, that is usually evaluated through cor
relation or coherence analysis. However, the FBN constructed by FC is 
an undirected graph which may not adequately reveal the causal effects 
of neural activity among brain regions. Effective connectivity measures 
the information transfer pattern of neuronal interactions, which is closer 
to the real brain function mechanism. The common methods to compute 
EC conclude Granger causality analysis (GCA), Bayesian networks (BN), 

dynamic causal modeling (DCM) and transfer entropy [3–5]. Khazaee 
et al. [6] found that the directed network formed by effective connec
tivity can obtain higher classification accuracy compared with the un
directed network formed by functional connectivity in identifying mild 
cognitive impairment (MCI) and AD. Studies have shown that brain 
network has become a biological marker of cognitive research and dis
ease prediction [7–9]. 

Traditional FBN studies assumes that brain networks are temporal 
stationary throughout the fMRI scan. However, recent studies show that 
FBN changes dynamically with time, and the time-varying characteris
tics of FBN contain a lot of useful information [10,11]. The brain is 
constantly variable even at rest and show moment-to-moment (second 
apart) changes in connectivity. It is believed that information on the 
temporal dynamics of brain connectivity changes in both strength and 
direction contributes to a more integrated and comprehensive under
standing of the functional organization of the brain. Indeed, studies have 
shown that quantification of dynamic connectivity offers potential value 
for better diagnosis, prognosis, and even treatment in physical and 
mental disorders such as AD [12]. For example, Rangaprakash et al. [13] 
integrated static and dynamic EC modeling with strength and variance 
of directional connectivity to identify disease foci and associated paths. 
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Fu et al. [14] explored the potential association of static and dynamic 
functional network connectivity abnormalities with AD and SIVD and 
discovered dynamic FBN to be a more important biomarker since its 
progressively altered patterns can better track cognitive impairment. 

In practical experiments, low signal-to-noise ratio, noise caused by 
non-neural interference (e.g., physiological noise from heartbeat and 
respiration, and machine instability) can cause changes in the BOLD 
signal over time, leading to changes in network connectivity metrics. 
Also, due to the nature of psychological processes, particularly resting- 
state fMRI without any experimental design, the duration of FBN 
states and the exact timing of changes are habitually unknown [15]. 
Meanwhile, evidence indicated that the dynamics of brain networks in 
task-state fMRI are usually not entirely governed by the boundaries of 
task events/blocks [16,17]. Thus, there is a great need for establishing 
an efficient method for mining the dynamic behavior of brain networks 
that does not require a priori knowledge. In recent years, the exploration 
of algorithms based on the dynamic connectivity of fMRI data and their 
applications in diseases have developed rapidly, including sliding win
dow method [18,19], time-varying vector autoregressive models (TV- 
VAR) [20,21], and dynamic connectivity detection (DCD) algorithm 
[22]. However, these methods have their own shortcomings. The step 
size and window length are key parameters affecting the sliding window 
technique, and their selection will have a significant impact on the 
analysis results. TV-VAR model develops a method that can identify 
changes of causal influence (directed) connectivity, but it needs addi
tional clustering algorithms to get the change points and it does not 
account for the temporal structure. DCD model explores a time-varying 
sparse covariance matrix [23], revealing dynamic interdependent net
works of entities. However, it fails when brain activity patterns change 
too frequently, and the resulting network is undirected. 

The variability of undirected networks in brain regions has been 
frequently addressed in past studies [24,25], while dynamic effective 
connectivity has been less explored. In this work, we propose a data- 
driven change points model to automatically assess the number and 
location of temporal changes. The time-varying effective networks are 
obtained by detecting changes in brain networks over time at the indi
vidual level through connectivity, i.e., finding time points when most or 
all unidimensional connectivity signals change together in some specific 
way. In detail, first, the connectivity metric at each time point was 
estimated from fMRI data of each subject, and the change points of the 
connectivity time series were detected under the fused lasso method 
[26]. Second, we used conditional GCA [27] to infer directed brain 
networks for state phases specified with the estimated adjacent change 
points. The performance of the proposed method was evaluated through 
extensive simulation studies that involved dynamic networks with 
various changes in connectivity. Finally, to further demonstrate its 
validity, the values of the dynamic effective connectivity network con
structed by resting-state fMRI data from Alzheimer’s disease (AD) pa
tients and healthy controls (HC) are applied as the original feature set for 
feature selection, and then classified using support vector machines 
(SVM). The results showed that the fused lasso method achieved better 
classification results than static and sliding time window methods, 
indicating that the dynamic effective connectivity based on change 
points detected by fused lasso method is a better feature for 
classification. 

2. Materials and methods 

To characterize changes in brain networks, dynamic connectivity 
may be a scalable brain measure that is accessible to neuroscientists and 
informatics researchers alike. In this paper, we first figure out the 
change points of brain network connectivity for each subject, and then 
estimate segmented effective connectivity networks [28]. It means that 
the brain is in an approximately consistent connectivity state during the 
corresponding time interval. 

2.1. Change points estimation 

In order to determine the change points of brain networks during 
fMRI data acquisition, we describe a time-series pattern of connection 
which means a time-varying connectivity vector between any two brain 
regions at each time during the experimental period. These pairwise 
correlated temporal processes are utilized to identify the change points 
of the network. As a result, the multidimensional fMRI time series is 
managed to be divided into diverse segments according to significant 
changes in connectivity. The brain network is approximated within each 
segment, with significant differences between adjacent segments. 

2.1.1. Connectivity Metric constructed by fMRI subsequences 
The fMRI data of a single subject is described by a matrix, with the 

number of rows T being the number of sampling points and the number 
of columns p referring to the number of brain regions studied. Each ROI 
corresponds to the average BOLD signal of all voxels in the brain region. 
Each column represents the fMRI observations of neural activity for a 
ROI, and each row represents the observation of all ROIs at each time 
point. Then, a series of overlapping fMRI subsequences are generated 
with the length of h (that is, h observations). As a result, 
n = [(T − h)/s] +1 overlapping fMRI subsequences with step size s were 
generated. Each fMRI subsequence is denoted as a matrix Xτ = [Xτ1,Xτ2,

....,Xτp] ∈ R
h×p

, τ ∈ {1, ...,n}. 
It is assumed that the whole scanning process contains K+1 different 

state phases spaced by K unknown brain network change points with 
1 < a1 < ... < aK− 1 < aK < T. The k-th state stage consists of time in
terval between aK− 1 and aK, where the brain network is relatively sta
tionary. The set of n subsequences’ centroids is denoted as \{ τ1, τ2, ...,

τn\} . For each subsequence, the Pearson correlation coefficient matrix 
of the brain regions at the center time point τ is expressed as ̃ρτ = cor(Xτi,

Xτj) =
cov(Xτi ,Xτj)

σXτi σXτj
∈ R

p×p, i, j ∈ {1, ..., p}, τ ∈ \{ τ1, ..., τn}. The correlation 

profile/connectivity from time points 1 to τ1, and from τn to T is 
expanded and equal to correlation profile at time 1 and T, respectively. 
The values of lower triangle in ρτ (size: p× p), τ ∈ \{ 1, ...,T} at each time 
point are drawn into a row vector to form a matrix Y (size: T×

p(p− 1)
2 ), 

namely, the connectivity metric. Each column of Y represents a collec
tion of a connection across all time points during an experiment and 
each row represents all connections at a time point. Then, we approxi
mate the multivariate pairwise dependent time series via a piecewise 
constant function under a fused lasso approach to detect temporal 
changes in connectivity. These change points are the times at which 
there are significant differences in the connectivity metric. The method 
divides the scanning period into distinct state phases, so that the con
nectivity is constant within a state phase but changes across these 
phases. 

2.1.2. Group Fused Lasso for detecting change points in brain connectivity 
For a linear regression model (1), let y ∈ RN be the response vector, 

X ∈ RN×P be the design matrix, β ∈ RP be the regression coefficient 
vector, ε ∈ RN be the residual vector that conforms to an independently 
and identically distribution εnÑ(0,σ2), n ∈ {1,2, ...,N}. 

y = Xβ+ ε (1) 

Considering the order between variables, Tibshirani et al. [29] pro
posed a fused lasso model, which not only sparsely limited the regression 
coefficient, but also the continuous difference of the regression coeffi
cient of adjacent variables. Therefore, it could not only obtain the sparse 
solution of the regression coefficient, but also make the adjacent 
regression coefficient change smoothly. The fused lasso solution of the 
linear regression model in Equation (1) can be expressed as 

β̂ = argmin
1
2

β∈RP

‖y − Xβ‖2
2 + λ1‖β‖1 + λ2

∑P

p=2

⃒
⃒βp − βp− 1

⃒
⃒ (2) 
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Where λ1⩾0, λ2⩾0 are the regularization parameters, βp is the p-th 
element of vector β. In Formula (2), the first term is the residual term, 
ensuring that the error between the response vector represented by 
design matrix and the original response vector is as small as possible. 
The second term with L1 norm penalty function is the sum of the ab
solute values of the coefficients, so that the coefficient with a small 
absolute value is automatically compressed to zero, achieving the pur
pose of variable selection and coefficient sparsity. The third term 
∑P

p=2
⃒
⃒βp − βp− 1

⃒
⃒ is called fusion penalty, which smoothly changes the 

regression coefficients of adjacent variables, that is, penalizes the ab
solute value of the difference between the regression coefficients cor
responding to adjacent variables, so that the solution of the fused lasso 
has the characteristics of piece-wise constant. Obviously, its effect is to 
make the adjacent regression coefficients almost equal, so the fused 
lasso can be supposed to have an automatic group effect [30]. 

In the real data, p > 2 ROIs were selected to extract fMRI data for 
each subject. This results in m (m =

p(p− 1)
2 ) pairwise correlated connec

tivity time series, which are interdependent and synergistic to form a 
dynamic brain network. The connectivity metric Y was modeled as a 
piecewise-constant signal with each column denoting the time-varying 
connectivity of two brain regions and locations of change points were 
assumed to be shared across connections. This makes sense because we 
focus on changes in brain networks, where partial or all connections 
change regularly and consistently. The (non-convex) jump numbers 
were replaced by the (convex) total variation, penalizing the connec
tivity metric to approximate a segmented constant signal with multiple 
change points, i.e., solving 

min
U∈RT×m

‖Y − U‖
2subject to

∑T − 1

i=0
δ(Ui+1,∙ − Ui,∙)⩽k (3) 

Using the Lagrange multiplier method, the combinatorial optimiza
tion problem can be relaxed to a convex optimization problem that 
contains a quadratic error criterion whose penalty is the sum of the 
euclidean norm of multidimensional increments, i.e., to consider: 

min
U∈R

T×m

1
2
‖Y − U‖

2
+ λ

∑T− 1

i=1

⃦
⃦Ui+1,∙ − Ui,∙

⃦
⃦ (4) 

The first term in (4) measures the error between observed connec
tivity metric and solution U ∈ R

T×m which is a piece-wise constant 
matrix for a given λ > 0. The second term controls the cumulative 
increment of all m correlations profiles at continuous times, where the 
element Ui+1,j − Ui,j refers to difference of the j-th correlation between 
time point i and i + 1. When the change of multivariate connection time 
series is not significant, the increment is zero, otherwise the increment 
takes non-zero values. When i is regarded as a change point of network, 
it indicates that one or more connections in the connectivity change 
significantly at this time. Obviously, penalty parameter λ influences the 
number of change points. Many increment vectors Ui+1,∙ − Ui,∙ will be 
enforced to shrink to zero as λ increases. In conclusion, the solution of 
(4) offers an approximation of Y by a piecewise-constant matrix U ∈

R
T×m which share change points. The addition of regularization norm to 

U in (4) does not affect the detection location of the change points. For a 
fixed value of λ, the resulting optimization problem is reformulated as a 
fused lasso regression problem, which will facilitate the implementation 
by block coordinate descent or group fused least angle regression (LARS) 
algorithms, either exactly or approximately [31]. After that, dynamic 
programming strategy was used to calculate the minimum sum of the 
squared errors (SSE) from the subset of all possible change points. The 
curvature of the SSE curve is examined to determine the optimal number 
whose second-order derivatives do not rise to a certain threshold when 
more change points are added. Typical threshold values are chosen to 
range from 0 to 0.5. The smaller the threshold, the higher the tendency 
to retain more change points. 

2.2. Dynamic brain network estimation based on GC 

The strength and direction of the connections between ROIs were 
calculated using multivariate conditional GCA [32] to obtain EC 
matrices that form a directed dynamic brain EC network for each 
segment. Node is considered as each brain region associated with a time 
series while edge represents a direct effect between two different re
gions. Granger causality model is an analytical method based on vector 
autoregressive models that predict the value of the current time series by 
a linearly weighted combination of the values of the past time series. 
Therefore, it can only be applied to the causality test of time series data, 
and cannot be used between variables with only cross-section data. No 
prior knowledge is required, and the emphasis is on the temporal order 
of the data as they interact with each other. The directionality of in
formation transfer between brain regions or neurons can be reflected in 
the analysis of brain networks. In general, for two stationary time series 
xt and yt (t = 1,2, ...,T), if the combination of the historical information 
of x and y is more conducive to the prediction of the current value of x 
than only using the historical information of x, that is, the variance of 
residuals is reduced, then y is considered to be the Granger cause of x. 
VAR(q) and joint VAR(q) model are defined as 

xt =
∑q

i=1
a1ixt− i + ε1t (5)  

xt =
∑q

i=1
a2ixt− i +

∑q

i=1
b2iyt− i + ε2t (6) 

The order q, i.e., the maximum number of lagged samples, is selected 
with Akaike information criterion (AIC), Bayesian Information Criterion 
(BIC), or according to requirements in the empirical considerations of 
the specific application [13]. a1i, a2i, b2i are the model coefficients, and 
εit, i = 1,2 are stochastic error term which are not correlated with time. 
The optimal coefficient set to minimize the model error is estimated by 
multivariate least squares. The Granger causality effect of y on x is 
defined by the following formula: 

Fy→x = ln
var(ε1t)

var(ε2t)
(7) 

Obviously, Fy→x⩾0. If the past values of the time series y do not 
contribute to the prediction of x, the regression coefficient b2i ≡ 0, var 
(ε1t) = var(ε2t) and Fy→x ≡ 0. Otherwise, if the past values of y can 
improve the prediction, var(ε1t) > var(ε2t) and Fy→x > 0. The F-test is 
performed to determine whether the GC value is significant, that is, 
whether the difference between prediction error in formula (5) and (6) is 
meaningful. The prediction error is usually expressed statistically as 
the residual sum of squares (RSS). Formula (5) is a constrained regres
sion with RSSR and (6) is an unconstrained regression with RSSUR. The 
null hypothesis is H0: b21 = b22 = ... = b2q = 0, which means the lag
ging term of y is not part of this regression. To test this hypothesis, use 
F-test with degrees of freedom q and (T − 2q − 1), i.e., 

F =
(RSSR − RSSUR)/q

RSSUR/(T − 2q − 1)
(8) 

If the value of F > Fα which is calculated at the selected significance 
level α, the null hypothesis is rejected. In this case, the lagged term of y 
belongs to this regression, indicating that y G-causes x. 

The above binary Granger causality model obviously cannot distin
guish direct causality from indirect causality. Hence, Geweke extended 
traditional Granger causality to multivariate autoregressive model and 
added another stationary variable z to calculate the conditional Granger 
causality (CGC) which is one of the measures of direct effective con
nectivity. VAR(q) and joint VAR(q) model [33] can be formulated as: 

xt =
∑q

i=1
a3ixt− i +

∑q

i=1
c3izt− i + ε3t (9) 
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xt =
∑q

i=1
a4ixt− i +

∑q

i=1
b4iyt− i +

∑q

i=1
c4izt− i + ε4t (10) 

Conditional GC from y to x conditional on z (given z) is: 

Fy→x|z = ln(
var(ε3t)

var(ε4t)
) (11) 

Similarly, if the Granger causality from y to x is fully mediated by z, 
b4t ≡ 0 and var(ε3t) = var(ε4t), so Fy→x|z ≡ 0. When the modulation effect 
of z is considered and y to x still has a directed influence, var(ε3t) > var 
(ε4t) and Fy→x|z > 0. The statistical significance of causality can also be 
estimated by F test. 

2.3. Feature selection and classification 

Feature selection is the process of selecting some of the most effective 
features from the original features to reduce the sample dimensionality, 
and is an important means to improve the performance of learning al
gorithms. Here, tree model, an embedded feature selection algorithm, 
with little operation cost and suitable for automatic processing was used 
to screen the features so as to reduce the number of features in the model 
[34]. The idea of using gradient boosted decision tree (GBDT) to assess 
the importance of features is relatively simple. Generally, the closer a 
feature to the top node in the tree structure, the more important the 
feature is. After comparing the contribution between different features, 
we get a feature set which is sorted from the most important to the least 
important. 

The SVM algorithm with radial basis function kernel (RBF) is used to 
verify the dynamic brain effective networks modeling method based on 
fused lasso with an optimal subset of features. SVM uses kernel method 
to find a new space that is more favorable for nonlinear classification 
task. In the current experiment, we conducted 10-fold cross-validation 
strategy for robust classification and repeated 100 times. Classification 
performance of different kinds of features was reported by average 
accuracy. 

3. Results 

3.1. Simulation studies 

A series of simulation experiments were conducted to evaluate the 
capacity of fused lasso method in capturing network dynamics. We 
adopted simulation settings inspired by those found in previous papers 
on dynamic connectivity detection (DCD) algorithm [22,35,36]. Below 
is a brief description of each simulation study, which is repeated 20 
times. p and T represent the number of variables and the length of the 
time series, respectively. The heat maps in Figs. 1–3 displayed the true 
relations between the variables (that is, covariance matrices). For 

detailed values of the covariance matrices, please refer to supplementary 
materials. Description of Simulations 1–4: No network change point 
appears in the simulation time and the data is generated by white noise 
with p = 15 and T = 150; One network change point appears at time 150 
with p = 10 and T = 300; Two change points appear at times 200 and 
400 with p = 15 and T = 600; Three change points appear at times 500, 
1000, and 1500 with p = 20 and T = 2000. 

Fig. 4 illustrates the result of Simulation 1–4 where the x-axis stands 
for the length of time series, and the y-axis represents the number of 
simulations. The blue vertical lines denote the actual change points of 
the network in each simulation setting, and the solid circle expresses the 
position of detected change points with fused lasso method. It is 
demonstrated that the transition points of network structure can be 
found relatively precisely, verifying the effectiveness of the method. 
Although the existence of some small differences, change points are 
detected around the ground truth. 

The result of Simulation 1 is shown in Fig. 4(A). When the network 
structure remains unchanged, the fused lasso method gets the correct 
result without detecting the false change points. In fact, when the time 
series is shorter (such as 50), the correct result can still be obtained. The 
result of Simulation 2 is shown in Fig. 4(B) where there is a change point 
of network at time 150. The mean value of the change points detected in 
20 simulations is 149, which is close to the real value of 150, indicating 
the effectiveness of the method presented in this paper. The result of 
Simulation 3 which contains two change points at times 200 and 400 is 
shown in Fig. 4(C). The mean values of the change points detected in the 
20 simulations are 205 and 397. However, it was noted that the second 
change point was not detected in one simulation, which maybe because 
the change of connectivity around time point 400 did not reach the 
threshold and was missed. The result of Simulation 4 is shown in Fig. 4 
(D) with change points at times 500, 1000, and 1500. The mean values 
are 501, 1004 and 1495, respectively. In fact, the longer the time of state 
phase is, the closer the detection effect of the numbers and positions of 
change points are to the actual situation. As a whole, fused lasso method 
can judge out the true transition points of the dynamic network structure 
quite accurately. 

Due to the same purpose and similar simulation data, we compared 
the proposed method with the DCD algorithm [22]. The results showed 
that DCD method also achieved relatively good detection effect of 
change points, as shown in Supplementary Fig. 3. However, it generates 
many spurious checkpoints over the stationary time periods, especially 
when the number of variables increases. 

3.2. Application to experimental data 

3.2.1. fMRI data and preprocessing 
The resting-state fMRI data analyzed in current study was selected 

from public dataset published by Alzheimer’s Disease Neuroimaging 

Fig. 1. The covariance matrix applied for the two segments in Simulation 2.  
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Initiative (ADNI 2) Program [37], including 76 HC subjects and 67 pa
tients with Alzheimer’s disease. All subjects were asked to remain r =
elaxed but not to fall asleep during the scan. Images were collected by an 
echo planar imaging (EPI) sequence on 3.0 Tesla scanner with following 
parameters: flip-angle (FA) = 80◦; repetition time (TR) = 3000 ms; echo 
time (TE) = 30 ms; imaging resolution/slice thickness = 3.31 mm; slices 
= 48. A total of 140 volumes/scans (time points) were obtained for each 
subject. The demographic and clinical characteristics of all subjects 
studied in this experiment are displayed in Table 1. 

Image preprocessing is performed for all fMRI data with a standard 
pipeline with Data Processing Assistant for Resting-State fMRI (DPARSF) 
toolbox [38], including removing the first ten volumes of the functional 
images for subjects’ adaptation to the environment; slice timing to the 
middle slice; realignment for head movements compensation; normali
zation to the EPI template in standard Montreal Neurological Institute 
space; resampling to 3-mm isotropic voxels; spatial smoothing with a 4 
mm full width half-maximum Gaussian kernel; detrending. During the 
realignment step, three AD subjects exhibiting excessive head motion 

(>3 mm in translational head movement and/or 3◦ of rotational head 
movement) were excluded from further analysis. The white matter 
(WM), cerebrospinal fluid (CSF) signal and six rigid-body parameters 
about head movement were regressed out as nuisance covariates to 
reduce non-neuronal BOLD fluctuations and the effects of motion. 

3.2.2. Construct dynamic brain network 
To construct the causal interaction between the resting state fMRI 

time series of ROIs for each subject, a 14-node directed graph was 
constructed. The 14 abnormal functional areas associated with AD are 
defined as ROI in this paper corresponding to the Anatomical Automatic 
Labeling (AAL) template which are generally recognized by the 
academia [39], and are summarized as a set as follows (see Table 2): 
AAL_ROIs = {Amygdala_R, Calcarine_R, Cuneus_R, Frontal_Inf_Oper_L, 
Frontal_Inf_Tri_R, Fusiform_L, Lingual_L, Occipital_Sup_L, Olfactory_R, 
Parietal_Inf_L, Patietal_Sup_R, Postcentral_R, Temporal_Pole_Mid_R, 
Thalamus_L}. The masks of corresponding ROIs were extracted with 
wfu_pickatlas_3.0.5b toolbox and the mean time series was attained via 

Fig. 2. The covariance matrix applied for the three segments in Simulation 3.  

Fig. 3. The covariance matrix applied for the four segments in Simulation 4.  
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averaging signals of all voxels within ROIs, thus generating a repre
sentative signal for each ROI. The Unit Root test shows that all time 
series are stationary, largely depending on the resting state data we use. 

There are 14 ROIs resulting in 182 (14 × 13) directed edges. The 
mean static effective connectivity matrices were calculated separately 
for HC and AD group, and significant group differences were marked 
with asterisks as is shown in Fig. 5. The x-axis and y-axis represent the 
brain regions, and ij-th element in the matrix represents the quantitative 
Granger causality from the j-th ROI to the i-th ROI. Compared with HCs, 
AD patients exhibited significantly increased directed influence from 
Frontal_Inf_Oper_L to Parietal_Inf_L, from Patietal_Sup_R and Tempora
l_Pole_Mid_R to Postcentral_R, and decreased effective connectivity from 

Lingual_L to Cuneus_R, Frontal_Inf_Tri_R and Occipital_Sup_L, from 
Occipital_Sup_L to Fusiform_L and Lingual_L, from Cuneus_R to Fronta
l_Inf_Oper_L, from Frontal_Inf_Tri_R and Fusiform_L, from Postcentral_R 
to Amygdala_R. 

Fig. 4. The results of Simulation 1–4. The circles represent the important change points of dynamic networks found in Simulation 1–4 which is shown in (A) - (D), 
respectively. 

Table 1 
Demographic and clinical information of two groups of subjects from ADNI 
database. MMSE: Mini-Mental State Examination. The values are signified as 
mean ± standard deviation.  

Information Healthy Controls (HC) Patients with AD 

Number 76 67 
Age (years) (71–87) 

77.71 ± 5.7 
(71–87) 
77.30 ± 8.53 

Sex (male/female) 35/41 32/35 
MMSE 28.74 ± 1.45 21.29 ± 3.94  

Table 2 
The abnormal brain regions of the Alzheimer’s disease group compared to the 
healthy control group.  

Labels ROI Name Anatomical 
classification 

1 Right Amygdala Temporal 
2 Right Calcarine fissure and surrounding cortex Occipital 
3 Right Cuneus Occipital 
4 Left Inferior frontal gyrus, opercular part Prefontal 
5 Right Inferior frontal gyrus, triangular part Prefontal 
6 Left Fusiform gyrus Temporal 
7 Left Lingual gyrus Occipital 
8 Left Superior occipital gyrus Occipital 
9 Right Olfactory cortex Prefontal 
10 Left Inferior parietal, but supramarginal and 

angular gyri 
Parietal 

11 Right Superior parietal gyrus Parietal 
12 Right Postcentral gyrus Parietal 
13 Right Temporal pole: middle temporal gyrus Temporal 
14 Left Thalamus Subcortical  
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To further validate the model, dynamic effective connectivity is then 
determined. The length of overlapping fMRI sub-sequences was set to 
5 and the correlation coefficient matrix of brain regions was calculated 
for each time point. After generating the short-time segmented Con
nectivity Metric, the fused lasso model is used to find the change points. 
The segmented brain EC networks were constructed using conditional 
Granger causality method between adjacent change points, so that a 
series of dynamic connectivity matrices for each subject could be ob
tained to extract brain network dynamics. The minimum distance be
tween the candidate change points was set to 30 time points [40], so 
each subject ended up with 2 to 3 brain network states. One subject was 
randomly selected in the HC and AD groups respectively, and their static 
and dynamic effective connectivity networks are displayed in Supple
mentary Fig. 1. 

3.2.3. Classification 
Subjects were divided into AD and HC by piece-wise effective con

nectivity network. Each element in EC matrix is the Granger causality 
that represents the directed relationship between two brain areas, and it 
is positive value. Values close to 0 signify that the time series is not the 
Granger causality of the other. The larger the value is, the more pre
dictive one time series can be to the other time series, that is, one is the 
Granger causality of the other. We averaged the piece-wise EC matrix of 
every subject and removed the values in main diagonal since it denotes 
an area’s predictive influence on itself. Then the remaining part was 
flattened along the columns and collapsed into a one-dimension vector 
with dimension 1 × p(p − 1) in which p is the number of related ROIs to 
retrieve the initial features [32]. Fourteen ROIs were selected, so the 
procedure resulted in 182 averaged dynamic GC values which consist in 
the original feature set for the machine learning algorithm. 

Gradient boosted decision tree (GBDT) was used for feature selection 
and feature importance evaluation. The importance of the selected 
features is sorted. Then, the most discriminative connectivity with high 
feature importance was input into the RBF_SVM classifier for training 
under 100 repetitions of the experiment with 10-fold cross-validation. 
As shown in Table 3, the classification accuracy of static EC, dynamic 
EC based on fused lasso reached 80.71% and 86.24%, respectively, 
indicating that these features have certain ability to distinguish between 
the AD and HC groups. It can be clearly seen that the classification with 

feature selection is better, especially for the effective connections, which 
have twice the original number of features than the functional connec
tions. A large number of features may be redundant and contain noise. 
The window width of the sliding time window was set from 30 to 50, and 
the EC network in each time window was calculated separately, and 
then averaged as the classification features for each subject. As shown in 
Fig. 6, when the window width was 33, the maximum classification 
accuracy reached to 82.06%. The results of analyses showed that the 
dynamic EC based on fused lasso improved classification performance, 
compared with conventional static and window methods. 

4. Discussion 

There are some difficulties in assessing brain dynamics, especially at 
rest. Resting state has no explicit tasks designed for state change, so each 
brain network change point is irregular and dissimilar across runs 
[41,42]. At this point, we need to explore the relatively stable connec
tivity state and change points of the brain network for each subject from 
a data-driven perspective. In this paper, the framework of fused lasso 
regression was taken advantage to extend the approximation based on 
total variation to multi-dimensional settings, and detect the change 
points of time-varying networks constructed by multiple brain regions. 
The feasibility of the proposed method is validated by simulation ex
periments. Then, it was applied to fMRI analysis of ADNI dataset and 
compared with sliding window technique. Inter-group differences be
tween AD and HC were assessed, as well as state transition behaviors, 
revealing changes in the diseases. 

The simulation results proved that the fused lasso was able to 

Fig. 5. Mean static effective connectivity (sEC) matrix of HC and AD, respectively. Asterisks denotes significant difference in static effective connectivity as obtained 
via independent sample t-test (p < 0.05) where red indicates that the sEC of AD is larger than HC, and black means the opposite. 

Table 3 
Classification performance of SVM using features extracted by different 
methods. FS: feature selection; sFC: static functional connectivity; sEC: static 
effective connectivity; sw: sliding window.  

Method sFC sEC sw-EC fused lasso-EC 

Accuracy(%) No-FS  72.14 45 50  57.14 
FS  81.67 80.71 82.06  86.24  

Fig. 6. The classification accuracy of dynamic effective connectivity based on 
sliding time window method corresponding to different window width. 
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precisely capture the time-varying connectivity patterns. For state 
phases of different lengths, the positions found are all near the true 
transition point. We found that the longer the state phase is, which 
means the slower the network structure changes, the more accurate the 
results will be. The difference between the result and the exact value 
remains within the range of the subsequence length (i.e., 5), indicating 
the feasibility of the method. But occasionally it will miss some change 
points as we can see from Fig. 4, this may be because the simulated data 
are greatly affected by the added noise occasionally and the slope of SSE 
at that point does not reach the threshold (i.e., 0.5). 

Further, the public fMRI data set was used to verify the classification 
effect of the dynamic EC network constructed by the fused lasso model. 
The brain network is composed of nodes and edges. The node refers to 
brain region, which are recorded as one-dimensional fMRI signal, and 
the edges are represented by the joint interaction of different brain re
gions. Previous studies of rs-fMRI have discovered that patients with AD 
dementia have decreased functional connectivity in default network, 
attention network, executive control network [43,44]. Zhong et al. [45] 
found that compared with AD patients, the regions in DMN of normal 
subjects exhibited stronger influential interactions, except that the in
teractions between medial prefrontal cortex (MPFC) and bilateral infe
rior parietal cortex (IPC) was weaker than those of AD patients. As 
demonstrated in Fig. 5, most of the effective connections between 
abnormal brain regions in AD patients were significantly reduced, 
indicating that the information flow between brain regions was reduced. 
There were also three significantly increased connections, all flowing 
from other regions to the parietal lobe. In patients with AD, there is not 
only a decrease in information flow in brain regions, but also an increase 
in information flow related to the parietal lobe, suggesting both 
impairment (decrease) and compensation (increase) of effective con
nectivity in patients with AD. However, the properties of dynamic EC are 
rarely studied. 

Finding the time point where brain networks change is an important 
question in neurophysiological study. Network changing over time 
actually changes in connectivity which is triggered by dynamic time 
courses of ROIs. We aimed to discover change points of dynamic 
network patterns which are constituted by a set of connection sequences 
which vary over time. That is, we modeled a time-dependent connec
tivity metric and identified multiple change points shared by multiple 
connections under a fused lasso approach, in particular, abrupt changes 
in measurements. The fused lasso is a sparse model that achieves auto
matic grouping effects by penalizing differences in coefficients. The 
dynamic network modeling approach based on fused lasso can smooth 
the connectivity changes of adjacent time points. In current work, we 
seek to distinguish changes in brain networks in AD patients, and pro
vides an accurate algorithm to interpret time-varying directional in
teractions among brain regions and classify AD patients with healthy 
controls by employing a dynamic EC approach based on conditional 
granger causality and advanced machine learning methods. As shown in 
Supplementary Figs. 1 and 2, static connections are averaged over the 
entire scan time, while dynamic connections can capture rich and fine- 
grained time-varying information. The results show the efficiency of 
fused lasso model in constructing dynamic EC networks, which can 
extract more useful features for classification. The change points con
structed by the fused lasso method form two or three segmented directed 
networks since the pre-processed data only has 130 time points, while 
the sliding time window constructs dozens of continuous networks. Both 
methods use fMRI data from ADNI to evaluate dynamic EC. However, as 
shown in Table 3, the accuracy of the former is higher than that of the 
latter. At the same time, the choice of window size obviously influenced 
the performance of the sliding window method [46]. Experimental re
sults on 140 subjects in ADNI dataset showed that our proposed method 
outperformed the sliding window approach, which probably due to 
better dynamic description. Supplementary Fig. 4 demonstrates the 
dynamic effective connection matrix of AD, which is averaged by EC of 
all time points. The change points detection method based on fused lasso 

regression revealed 11 significantly different connections between AD 
and HC. When the window width of the sliding time window was set to 
33, there were 14 connections with significant differences between the 
two groups. Six of the differential connections are the same, indicating 
that the two methods have certain overlap and commonality, but also 
have differences. It is noted that the sliding window approach has been 
utilized in many dynamic studies with significant findings [47]. This 
also demonstrates the robustness of the change points detection model 
based on fused lasso method which characterizes the dynamic changes 
in brain networks more accurately. 

Change point model conceptualizes dynamic brain connectivity as a 
collection of quasi-stable state phases. Corresponding to diverse modu
lations in the brain, the piecewise constant connectivity states are 
repeatedly detected to jump at different change points. Although the 
existing change points model for dynamic connectivity have had some 
success in explaining temporal changes of brain networks, challenges 
remained such as only working best in task-based experiments con
taining multiple subjects. Compared with static EC model and conven
tional dynamic EC model based on sliding window method, the 
experimental results show that the fused lasso can characterize the brain 
network dynamics, and achieve better classification effect. In conclu
sion, the fused lasso method proposed in this paper builds dynamic 
effective connectivity network, mining the dynamic changes of infor
mation flow in brain regions, effectively preserving the sparsity of the 
network and the time smoothness of sub-sequences, and improving the 
classification effect of the algorithm, thus providing help for the diag
nosis of brain diseases to a certain extent. 

Nevertheless, there are still some aspects that need further study. For 
example, connectivity of the whole brain network can be studied based 
on different templates, especially functional partition templates (e.g., 
264 Putative functional Areas [48]). In addition, we aim to capture the 
time-varying properties of brain directed networks. In the future, the 
conditional Granger causality model can be improved, such as adding 
nonlinearity and sparsity, so as to obtain more accurate and refined 
brain networks. Also, fMRI data with task state or longer scan time can 
be further verified and analyzed. 

5. Conclusion 

Traditional static FBN studies ignore the rich dynamic time-varying 
information in the connectivity between brain regions. Recent studies of 
dynamics have also paid little attention to the dynamic effective con
nectivity network of the brain. The fused lasso method is a data-driven 
and computationally efficient approach to address the problem pre
sented in this paper, i.e., temporal change points detection of the 
multivariate time series of correlations in dynamic brain connectivity 
research. It divides the brain networks according to the sparsity and 
smoothness of connectivity changes between ROIs. The conditional 
Granger causal model estimates a directed graph at each partition/ 
segment, representing the time-varying brain effective network, 
reflecting the dynamic process of information transmission of neural 
activity. 
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